References & Further Reading
Books
Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Online Resources
Documentation
- Scikit-learn Documentation: https://scikit-learn.org/stable/
- XGBoost Documentation: https://xgboost.readthedocs.io/
- Pandas Documentation: https://pandas.pydata.org/docs/
- Matplotlib Documentation: https://matplotlib.org/stable/contents.html
- Seaborn Documentation: https://seaborn.pydata.org/
Courses
- Coursera - Machine Learning by Andrew Ng: https://www.coursera.org/learn/machine-learning
- Fast.ai - Practical Deep Learning: https://course.fast.ai/
- Kaggle Learn: https://www.kaggle.com/learn
- DeepLearning.AI Specializations: https://www.deeplearning.ai/
Tutorials & Guides
- Scikit-learn Tutorials: https://scikit-learn.org/stable/tutorial/
- Kaggle Courses: https://www.kaggle.com/learn
- Towards Data Science: https://towardsdatascience.com/
- Machine Learning Mastery: https://machinelearningmastery.com/
Datasets
- UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/
- Kaggle Datasets: https://www.kaggle.com/datasets
- OpenML: https://www.openml.org/
- Google Dataset Search: https://datasetsearch.research.google.com/
Research Papers & Platforms
- arXiv.org: https://arxiv.org/ (Machine Learning papers)
- Papers with Code: https://paperswithcode.com/
- Google Scholar: https://scholar.google.com/
Communities
- Reddit r/MachineLearning: https://www.reddit.com/r/MachineLearning/
- Kaggle Forums: https://www.kaggle.com/discussion
- Stack Overflow: https://stackoverflow.com/questions/tagged/machine-learning
- Cross Validated: https://stats.stackexchange.com/
Tools & Libraries
Python Libraries
- NumPy: Numerical computing
- Pandas: Data manipulation
- Scikit-learn: Machine learning
- XGBoost: Gradient boosting
- Matplotlib/Seaborn: Visualization
- Imbalanced-learn: Handling imbalanced datasets
Development Tools
- Jupyter: Interactive notebooks
- VS Code: Code editor
- Git: Version control
- Docker: Containerization
MLOps & Production
- MLflow: Experiment tracking
- DVC: Data version control
- FastAPI: Model serving
- TensorBoard: Visualization
Key Concepts Index
- Supervised Learning: Chapters 3, 5, 6
- Unsupervised Learning: Chapter 7
- Overfitting: Chapter 4
- Cross-Validation: Chapters 4, 8
- Hyperparameter Tuning: Chapter 8
- Imbalanced Data: Chapter 9
- Feature Engineering: Chapter 9
- Pipelines: Chapter 9
- Gradient Boosting: Chapter 11
Keep this book as a reference as you continue your machine learning journey!